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Abstract

Let Q be a non-empty open subset of RY, where d>2. A modern theorem on harmonic
approximation is used to show that there exists a harmonic function 4 on Q behaving wildly
near every boundary point of Q. The function % is analogous to the holomorphic monster
functions of W. Luh.
© 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

Birkhoff [4] showed that there is an entire (holomorphic) function f* such that the
set of translates {zr—f(a + z):aeC} is dense in the space of all entire functions
equipped with the topology of local uniform convergence. Such a function / may be
thought of as behaving wildly near the boundary point co of its domain C. Luh
[11-15] has undertaken a study of holomorphic functions on more general open sets
that exhibit wild behaviour near every finite boundary point. The following theorem
of his is proved in [14].

Theorem L. Let Q be a proper open subset of C whose components are simply

connected. There exists a holomorphic function f on Q with the following properties.
(i) For every finite boundary point { of Q, for every compact set K with connected

complement in C, and for every continuous function g on K that is holomorphic on the
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interior of K there exist linear transformations t,(z) = a,z + b, with t,(K)<=Q and
dist(z,(K), () =0 such that fot,— g uniformly on K.

(ii) Further, every derivative f9) of f and every anti-derivative of f has the boundary
behaviour described in (i).

Luh calls such functions holomorphic monsters. For other results on holomorphic
monsters see the dissertations of Grosse-Erdmann [9] and Schneider [16], and for a
survey of related topics see Grosse-Erdmann’s article [10].

Dzagnidze [6] proved the following analogue of Birkhoff’s theorem.

Theorem D. There exists a harmonic function h on R?, where d =2, such that the set of
translates {xv h(a + x):ae R} is dense in the space of all harmonic functions on RY
equipped with the topology of local uniform convergence.

Theorem D can be proved by using Walsh’s classical theorem on harmonic
approximation (see e.g. [8, Section 8.2]) or, slightly more succinctly, by using a more
recent result about harmonic approximation on unbounded sets (see e.g. [2, Section
11]). The purpose of this note is to show that Theorem L also has a harmonic
analogue. The key result for its proof is again a theorem on harmonic
approximation, quoted below as Lemma 1.

We shall use the following notation. The Alexandroff point (at infinity) of R is
denoted by oo, and for a subset E of R?, we denote by JE the boundary of E in the
one-point compactification R U{ o0} of R?. Let (E,) be a sequence of non-empty
bounded sets in R? and let y be a point in RY. We write E,—y if sup{||x —
y|l:xeE,} -0 as n— oo, where || - || denotes the Euclidean norm on RY; we write
E,— oo if inf{||x||:xe E,} - + o as n— 0. If E is a non-empty subset of R?, then
H (E) denotes the space of all functions 4 that are harmonic on some open set
containing E. In particular, if E is open, then J#(E) is just the space of functions that
are harmonic on E. We write Ny =1{0,1,2,...} and use standard multi-index
notation: if & = (o, ...,0y) € Ng, then

D* = all+"'+0(11/ax?l ,”ade'

A function 7:R? - R? will be called a simple transformation if 7(x) = ax + y, where

aeR\{0} and yeR?. A simple transformation t preserves harmonicity: 1€ .# (t(E))
if and only if hote #(E).

2. Main result

Theorem 1. Let Q be a non-empty open subset of R, where d=2. There exists a
Sunction h in A (Q) with the following properties.
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(i) For every y in OQ, for every compact set K with connected complement in R?, and
for every g in #(K) there exists a sequence (t,) of simple transformations with
7,(K) =Q for each n such that ©,(K)—y and hot,— g uniformly on K.

(i1) Every partial derivative D*h has the boundary behaviour described in (1).

In Section 3, we will compare Theorem 1 with Theorem L and also show that in
some respects Theorem 1 can be strengthened.

The following result of Gardiner (see [8, Theorem 3.11]) on tangential harmonic
approximation is central to the proof of Theorem 1. In stating it, we use Q" to denote
the one-point compactification of Q.

Lemma 1. Let S be a proper relatively closed subset of a connected open set Q in R?
such that Q*\S is connected and locally connected. If He #(S) and u is a positive
superharmonic function on some open set containing S, then there exists a function h in
H(Q) such that 0<h — H<u on S.

We now prove Theorem 1. Until the final paragraph of the proof, we suppose that
Q is connected. Let B(x,r) denote the open ball of centre x and radius r in R?; we

also define B(co,r) = {yeR?||y||>r"'}. For each positive integer n let C, be a
countable (finite if 0Q\{ oo} is bounded) subset of Q with the property that

By,n YnC,#0 (yedQ). (1)

We also suppose that the sets C,, are mutually disjoint and that every compact subset
of Q contains at most finitely many points of | J,~, C, = C, say. Then for each x in C
there exists a positive number r, such that the balls B(x,3r,) are mutually disjoint
and contained in Q. Further, we choose r, so that r,<n~! when xe C,. We define

S = U B(x,2ry), (2)

xeC

where E denotes the closure of a subset E of RY. For future reference, we observe
that S satisfies the hypotheses of Lemma 1.

Let (P,,) be a sequence of harmonic polynomials that is dense in .#/(R?) with the
topology of local uniform convergence. Let T be the countable set of ordered triples
given by

T ={(B(0,q), Pm,o):q,meN\{0}, e Ng}w

and let ((B,, H,,o,)) be a sequence of elements of T in which each element of T
occurs infinitely often.

We now define a certain harmonic function H on |J, . B(x, 3ry). For this, we fix
a point x in C and let n be the unique positive integer for which xe C,,. Let 7, be a
simple transformation such that t,(B,) = B(x,3ry). Then H,°t,! is a harmonic
polynomial, and there exists a harmonic polynomial Q, such that D*Q, = H,ot;!
(see e.g. [1, Lemma 2]). We define H by writing H = Q, on B(x, 3r,) for each x in C.
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The next step is to use Lemma 1 to approximate H on the set S defined in (2) by an
element of 2 (Q). We define a positive superharmonic function « on | J,.. B(x,3ry)
in the following way. If xe C, then x e C, for exactly one n and there exists a positive
number A, such that

sup |[D*w|<A, sup |w| (3)
B(x.,ry) B(x,2ry)

for all bounded harmonic functions w on B(x, 2ry); see e.g. [3, Corollary 1.4.3]. We

define u = (nd,)”" on B(x, 3r,) for each x in C. Let S be the set defined in (2) and let
the functions H,u be as defined above. We have already observed that the
topological hypotheses of Lemma 1 are satisfied and that He #(S). Also, u is
positive and superharmonic on an open set containing S. Therefore by Lemma 1,
there exists a function % in #(Q) such that 0</ — H<wu on S; that is to say,
0<h— Q.<(nAy)"" on B(x,2r,) for each x in C, and each positive integer n. Since
D*Qy = Hyot! when xeC,, we find, using (3), that

|D*h — Hyet['|<n™' on B(x,ry) (xeG,). (4)

Now let K be a non-empty compact subset of R? with connected complement, and
suppose that ge #(K), o€ Ng,yeaﬁ and &£>0 are given. To complete the proof of
Theorem 1 in the case where Q is connected, it suffices to show that there is a simple
transformation 7 such that 1(K) cQn B(y, ¢) and |(D*h)ot — g| <e on K. By Walsh’s
harmonic approximation theorem (see e.g. [8, p. 8] or [3, p. 49]), there exists a
harmonic polynomial G such that |g — G| <g/3 on K. Also there exists an element P,,
of the dense sequence (P,) of harmonic polynomials such that |P,, — G|<¢/3 on K.
Let ¢ be an integer such that K < B(0, ¢). There exist arbitrarily large values of n for
which (B(0,q), Py, o) = (By, Hy,0,), and we choose such an integer n with the
property that n>3(1 +¢)/e. Let x be a point of C,nB(y,n~'). Then

T (K) =t(By) = B(x,7,) =Q.
If y# oo, then since r,<n~!,
t(K) = B(x,rx) = B(y, 2n7") = B(y, ¢);
similarly, 7.(K) = B(y,¢) in the case where y = oo. Further, by (4)
|(D*h)ot, — gl<n'<e/3 on K.
Hence, since H, = P,
|(D*h)oty — g| < |(D*h)oty — Hy| + | P — G| + |G — g|<e on K.
This completes the proof in the case where Q is connected.

Finally, we consider the general case. Let the components of Q be Q;, where j
belongs to some index set J. For each j in J let 4; be a harmonic monster for Q;; that
is to say, Theorem 1 holds with Q;, 4; in place of Q, 1. We define a function /2 on Q by
putting 1 = h; on Q; for each j. Thus, he #(Q). Let K be a compact set such that

RY\K is connected and suppose that ge #(K),y€dQ,xeN¢ and ¢e (0, 1) are given.
If yedQ; for some j, then we choose such a j and denote it by j(y) and we define
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y' = y; otherwise, we choose an index j(y) such that B(y,&/2) n0Q;,) is non-empty
and take )’ to be a point of this set. There exists a simple transformation t such that
1(K)<=Q;ynB(y',¢/2)=Qn B(y,e) and |[(D*h)et — g| = |(D*hy()°t — g|<e on K.
Thus, & has the properties described in Theorem 1.

3. Improvements of Theorem 1; comparison with Theorem L

By invoking some recent results on uniform harmonic approximation, stated
below as lemmas, we show how the hypotheses on the sets K and the functions ¢ in
Theorem 1 can be relaxed. For the concept of thinness, which appears in the lemmas,
we refer to [3, Chapter 7). If K is a compact subset of R, then we denote by K the
union of K with all bounded components of R/\K. We denote the interior of K
by K°.

Lemma 2. Let K be a compact subset of R?. The following statements are equivalent:
(a) for each g in #(K) and each positive number ¢ there exists a harmonic
polynomial G on RY such that |g — G|<e on K.
(b) R\K and R\K are thin at the same points of K.

Lemma 3. Let K be a compact subset of R?. The following statements are equivalent:
(a") for each g in C(K)n# (K°) and each positive number ¢ there exists a harmonic
polynomial G on R such that |g — G| <¢ on K.
(b)) R\K and RY\K® are thin at the same points of K.

Lemma 2 is a refinement of Walsh’s theorem and is the harmonic analogue of
Runge’s classical theorem on holomorphic approximation. Lemma 3 is the harmonic
analogue of Mergelyan’s theorem. Both lemmas are special cases of theorems of
Gardiner [7] and they can also be derived from results of Bliedtner and Hansen [5].
Lemmas 2 and 3 easily yield the following improvements of Theorem 1.

Theorem 2. Let Q be a non-empty open subset of RY. There exists a function h in
H(Q) with the following properties.

(i) For every y in 8Q, for every compact subset K of R? such that R\K and R\K are
thin at the same points of K and for each g in #(K) there exists a sequence (t,) of
simple transformations with t,(K)<Q for each n such that t,(K)—y and hot,—g
uniformly on K.

(ii) For every y in OQ, for every compact subset K of RY such that R\K and R*\K®
are thin at the same points of K and for each g in C(K)n#(K°) there exists a
sequence (t,) as in (i).

(iii) Every partial derivative D*h has the properties described in (i) and (ii).

To prove Theorem 2, let 4 be as in Theorem 1, let ae Ng and let ¢ be a positive
number. Suppose that ye 9Q and that K and g are as described in Theorem 2(i). By
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Lemma 2 there exists a harmonic polynomial G such that |g — G| <¢/2 on K. Since K
is compact and R"\K is connected, it follows from Theorem 1 that there exists a
simple transformation t such that ©(K)cQn B(y,¢) and |(D*h)et — G|<¢/2 on K.
Hence, |(D*h)ot — g| <& on K. This shows that D*/ has the approximation property
described in Theorem 2(i). To show that D*/ has the property described in Theorem
2(ii), we use the same argument with Lemma 3 in place of Lemma 2.

It is natural to ask whether the hypotheses on K and g in Theorem 1 can be made
exactly analogous to those in Theorem L: in Theorem 1 can we approximate
functions g which merely belong to C(K)n#(K°) if we assume only that K is
compact and R/\K is connected? When d = 2 the answer is affirmative, and we can
even relax the condition that R*\K is connected.

Theorem 3. Let Q be a non-empty open subset of R?. There exists a function h in #(Q)
with the following properties.

(i) For every y in OQ, for every compact set K such that K = 0K, and for every g in
C(K)NAH(K°) there exists a sequence (t,) of simple transformations with 1,(K) = Q
for each n such that hot, — g uniformly on K.

(i1) Every partial derivative D*h has the boundary behaviour described in (1).

When d = 2 the conditions (a), (b), (a’), (b') of Lemmas 2, 3 and the condition
OK = 0K are all mutually equivalent (see [8, Corollary 1.16]), so Theorem 3 follows
from Theorem 2.

Theorem 3 does not extend to higher dimensions. To see this, suppose that

Theorem 3 holds in R?, where d>3. Then, in particular, if K is a compact set in R?
such that K° = ¢ and R/\K is connected, every function in C(K) must be uniformly
approximable by elements of /#(K) and hence by harmonic polynomials. By Lemma
3, this requires that R*\K is nowhere thin. However, this is not necessarily true, as is
shown by consideration of the case where K = L x [0, l]“’f2 and L is a compact
subset of R? such that L° = ¢ and R*\L is thin at some point (see [8, Example 1.2]).
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