

JOURNAL OF Approximation Theory

Journal of Approximation Theory 123 (2003) 110-116

http://www.elsevier.com/locate/jat

Harmonic monsters

D.H. Armitage*

Department of Pure Mathematics, Queen's University Belfast, Belfast BT7 1NN, UK

Received 15 July 2002; accepted in revised form 23 April 2003

Communicated by Manfred v. Golitschek

Abstract

Let Ω be a non-empty open subset of \mathbb{R}^d , where $d \ge 2$. A modern theorem on harmonic approximation is used to show that there exists a harmonic function h on Ω behaving wildly near every boundary point of Ω . The function h is analogous to the holomorphic monster functions of W. Luh.

© 2003 Elsevier Science (USA). All rights reserved.

Keywords: Universal; Harmonic; Approximation

1. Introduction

Birkhoff [4] showed that there is an entire (holomorphic) function f such that the set of translates $\{z \mapsto f(a+z): a \in \mathbb{C}\}$ is dense in the space of all entire functions equipped with the topology of local uniform convergence. Such a function f may be thought of as behaving wildly near the boundary point ∞ of its domain \mathbb{C} . Luh [11–15] has undertaken a study of holomorphic functions on more general open sets that exhibit wild behaviour near every finite boundary point. The following theorem of his is proved in [14].

Theorem L. Let Ω be a proper open subset of \mathbb{C} whose components are simply connected. There exists a holomorphic function f on Ω with the following properties.

(i) For every finite boundary point ζ of Ω , for every compact set K with connected complement in \mathbb{C} , and for every continuous function g on K that is holomorphic on the

*Fax: +44-2890-335-076.

E-mail address: d.armitage@qub.ac.uk.

interior of K there exist linear transformations $\tau_n(z) = a_n z + b_n$ with $\tau_n(K) \subset \Omega$ and $\operatorname{dist}(\tau_n(K), \zeta) \to 0$ such that $f \circ \tau_n \to g$ uniformly on K.

(ii) Further, every derivative $f^{(j)}$ of f and every anti-derivative of f has the boundary behaviour described in (i).

Luh calls such functions *holomorphic monsters*. For other results on holomorphic monsters see the dissertations of Grosse-Erdmann [9] and Schneider [16], and for a survey of related topics see Grosse-Erdmann's article [10].

Dzagnidze [6] proved the following analogue of Birkhoff's theorem.

Theorem D. There exists a harmonic function h on \mathbb{R}^d , where $d \ge 2$, such that the set of translates $\{x \mapsto h(a + x) : a \in \mathbb{R}^d\}$ is dense in the space of all harmonic functions on \mathbb{R}^d equipped with the topology of local uniform convergence.

Theorem D can be proved by using Walsh's classical theorem on harmonic approximation (see e.g. [8, Section 8.2]) or, slightly more succinctly, by using a more recent result about harmonic approximation on unbounded sets (see e.g. [2, Section 11]). The purpose of this note is to show that Theorem L also has a harmonic analogue. The key result for its proof is again a theorem on harmonic approximation, quoted below as Lemma 1.

We shall use the following notation. The Alexandroff point (at infinity) of \mathbb{R}^d is denoted by ∞ , and for a subset E of \mathbb{R}^d , we denote by ∂E the boundary of E in the one-point compactification $\mathbb{R}^d \cup \{\infty\}$ of \mathbb{R}^d . Let (E_n) be a sequence of non-empty bounded sets in \mathbb{R}^d and let y be a point in \mathbb{R}^d . We write $E_n \rightarrow y$ if $\sup\{||x - y||: x \in E_n\} \rightarrow 0$ as $n \rightarrow \infty$, where $|| \cdot ||$ denotes the Euclidean norm on \mathbb{R}^d ; we write $E_n \rightarrow \infty$ if $\inf\{||x||: x \in E_n\} \rightarrow +\infty$ as $n \rightarrow \infty$. If E is a non-empty subset of \mathbb{R}^d , then $\mathscr{H}(E)$ denotes the space of all functions h that are harmonic on some open set containing E. In particular, if E is open, then $\mathscr{H}(E)$ is just the space of functions that are harmonic on E. We write $\mathbb{N}_0 = \{0, 1, 2, ...\}$ and use standard multi-index notation: if $\alpha = (\alpha_1, ..., \alpha_d) \in \mathbb{N}_0^d$, then

$$D^{\alpha} = \partial^{\alpha_1 + \dots + \alpha_d} / \partial x_1^{\alpha_1} \cdots \partial x_d^{\alpha_d}.$$

A function $\tau: \mathbb{R}^d \to \mathbb{R}^d$ will be called a *simple transformation* if $\tau(x) = ax + y$, where $a \in \mathbb{R} \setminus \{0\}$ and $y \in \mathbb{R}^d$. A simple transformation τ preserves harmonicity: $h \in \mathscr{H}(\tau(E))$ if and only if $h \circ \tau \in \mathscr{H}(E)$.

2. Main result

Theorem 1. Let Ω be a non-empty open subset of \mathbb{R}^d , where $d \ge 2$. There exists a function h in $\mathscr{H}(\Omega)$ with the following properties.

(i) For every y in $\partial \Omega$, for every compact set K with connected complement in \mathbb{R}^d , and for every g in $\mathscr{H}(K)$ there exists a sequence (τ_n) of simple transformations with $\tau_n(K) \subset \Omega$ for each n such that $\tau_n(K) \to y$ and $h \circ \tau_n \to g$ uniformly on K. (ii) Every partial derivative $D^{\alpha}h$ has the boundary behaviour described in (i).

In Section 3, we will compare Theorem 1 with Theorem L and also show that in some respects Theorem 1 can be strengthened.

The following result of Gardiner (see [8, Theorem 3.11]) on tangential harmonic approximation is central to the proof of Theorem 1. In stating it, we use Ω^* to denote the one-point compactification of Ω .

Lemma 1. Let *S* be a proper relatively closed subset of a connected open set Ω in \mathbb{R}^d such that $\Omega^* \setminus S$ is connected and locally connected. If $H \in \mathcal{H}(S)$ and *u* is a positive superharmonic function on some open set containing *S*, then there exists a function *h* in $\mathcal{H}(\Omega)$ such that 0 < h - H < u on *S*.

We now prove Theorem 1. Until the final paragraph of the proof, we suppose that Ω is connected. Let B(x,r) denote the open ball of centre x and radius r in \mathbb{R}^d ; we also define $B(\infty, r) = \{y \in \mathbb{R}^d : ||y|| > r^{-1}\}$. For each positive integer n let C_n be a countable (finite if $\partial \Omega \setminus \{\infty\}$ is bounded) subset of Ω with the property that

$$B(y, n^{-1}) \cap C_n \neq \emptyset \quad (y \in \partial \Omega).$$
⁽¹⁾

We also suppose that the sets C_n are mutually disjoint and that every compact subset of Ω contains at most finitely many points of $\bigcup_{n=1}^{\infty} C_n = C$, say. Then for each x in C there exists a positive number r_x such that the balls $B(x, 3r_x)$ are mutually disjoint and contained in Ω . Further, we choose r_x so that $r_x < n^{-1}$ when $x \in C_n$. We define

$$S = \bigcup_{x \in C} \overline{B(x, 2r_x)},\tag{2}$$

where \overline{E} denotes the closure of a subset E of \mathbb{R}^d . For future reference, we observe that S satisfies the hypotheses of Lemma 1.

Let (P_m) be a sequence of harmonic polynomials that is dense in $\mathscr{H}(\mathbb{R}^d)$ with the topology of local uniform convergence. Let T be the countable set of ordered triples given by

$$T = \{ (B(0,q), P_m, \alpha) : q, m \in \mathbb{N}_0 \setminus \{0\}, \alpha \in \mathbb{N}_0^d \},\$$

and let $((B_n, H_n, \alpha_n))$ be a sequence of elements of T in which each element of T occurs infinitely often.

We now define a certain harmonic function H on $\bigcup_{x \in C} B(x, 3r_x)$. For this, we fix a point x in C and let n be the unique positive integer for which $x \in C_n$. Let τ_x be a simple transformation such that $\tau_x(B_n) = B(x, 3r_x)$. Then $H_n \circ \tau_n^{-1}$ is a harmonic polynomial, and there exists a harmonic polynomial Q_x such that $D^{\alpha_n}Q_x = H_n \circ \tau_x^{-1}$ (see e.g. [1, Lemma 2]). We define H by writing $H = Q_x$ on $B(x, 3r_x)$ for each x in C. The next step is to use Lemma 1 to approximate H on the set S defined in (2) by an element of $\mathscr{H}(\Omega)$. We define a positive superharmonic function u on $\bigcup_{x \in C} B(x, 3r_x)$ in the following way. If $x \in C$, then $x \in C_n$ for exactly one n and there exists a positive number A_x such that

$$\sup_{B(x,r_x)} |D^{\alpha_n}w| \leq A_x \sup_{B(x,2r_x)} |w|$$
(3)

for all bounded harmonic functions w on $B(x, 2r_x)$; see e.g. [3, Corollary 1.4.3]. We define $u = (nA_x)^{-1}$ on $B(x, 3r_x)$ for each x in C. Let S be the set defined in (2) and let the functions H, u be as defined above. We have already observed that the topological hypotheses of Lemma 1 are satisfied and that $H \in \mathcal{H}(S)$. Also, u is positive and superharmonic on an open set containing S. Therefore by Lemma 1, there exists a function h in $\mathcal{H}(\Omega)$ such that 0 < h - H < u on S; that is to say, $0 < h - Q_x < (nA_x)^{-1}$ on $\overline{B(x, 2r_x)}$ for each x in C_n and each positive integer n. Since $D^{\alpha_n}Q_x = H_n \circ \tau_x^{-1}$ when $x \in C_n$, we find, using (3), that

$$|D^{\alpha_n}h - H_n \circ \tau_x^{-1}| < n^{-1} \quad \text{on } B(x, r_x) \quad (x \in C_n).$$

$$\tag{4}$$

Now let *K* be a non-empty compact subset of \mathbb{R}^d with connected complement, and suppose that $g \in \mathscr{H}(K), \alpha \in \mathbb{N}_0^d, y \in \partial \Omega$ and $\varepsilon > 0$ are given. To complete the proof of Theorem 1 in the case where Ω is connected, it suffices to show that there is a simple transformation τ such that $\tau(K) \subset \Omega \cap B(y, \varepsilon)$ and $|(D^{\alpha}h) \circ \tau - g| < \varepsilon$ on *K*. By Walsh's harmonic approximation theorem (see e.g. [8, p. 8] or [3, p. 49]), there exists a harmonic polynomial *G* such that $|g - G| < \varepsilon/3$ on *K*. Also there exists an element P_m of the dense sequence (P_n) of harmonic polynomials such that $|P_m - G| < \varepsilon/3$ on *K*. Let *q* be an integer such that $K \subset B(0, q)$. There exist arbitrarily large values of *n* for which $(B(0,q), P_m, \alpha) = (B_n, H_n, \alpha_n)$, and we choose such an integer *n* with the property that $n > 3(1 + \varepsilon)/\varepsilon$. Let *x* be a point of $C_n \cap B(y, n^{-1})$. Then

$$\tau_x(K) \subset \tau_x(B_n) = B(x, r_x) \subset \Omega$$

If $y \neq \infty$, then since $r_x < n^{-1}$,

$$\mathbf{r}_{\mathbf{X}}(K) \subset \mathbf{B}(\mathbf{X}, \mathbf{r}_{\mathbf{X}}) \subset \mathbf{B}(\mathbf{Y}, 2n^{-1}) \subset \mathbf{B}(\mathbf{Y}, \varepsilon);$$

similarly, $\tau_x(K) \subset B(y,\varepsilon)$ in the case where $y = \infty$. Further, by (4)

$$|(D^{\alpha}h)\circ\tau_x-g|< n^{-1}<\varepsilon/3$$
 on K .

Hence, since $H_n = P_m$

$$|(D^{\alpha}h)\circ\tau_x-g| \leq |(D^{\alpha}h)\circ\tau_x-H_n|+|P_m-G|+|G-g|<\varepsilon$$
 on K .

This completes the proof in the case where Ω is connected.

Finally, we consider the general case. Let the components of Ω be Ω_j , where *j* belongs to some index set *J*. For each *j* in *J* let h_j be a harmonic monster for Ω_j ; that is to say, Theorem 1 holds with Ω_j , h_j in place of Ω , *h*. We define a function *h* on Ω by putting $h = h_j$ on Ω_j for each *j*. Thus, $h \in \mathcal{H}(\Omega)$. Let *K* be a compact set such that $\mathbb{R}^d \setminus K$ is connected and suppose that $g \in \mathcal{H}(K), y \in \partial\Omega, \alpha \in \mathbb{N}_0^d$ and $\varepsilon \in (0, 1)$ are given. If $y \in \partial\Omega_j$ for some *j*, then we choose such a *j* and denote it by j(y) and we define

y' = y; otherwise, we choose an index j(y) such that $B(y, \varepsilon/2) \cap \partial \Omega_{j(y)}$ is non-empty and take y' to be a point of this set. There exists a simple transformation τ such that $\tau(K) \subset \Omega_{j(y)} \cap B(y', \varepsilon/2) \subset \Omega \cap B(y, \varepsilon)$ and $|(D^{\alpha}h) \circ \tau - g| = |(D^{\alpha}h_{j(y)}) \circ \tau - g| < \varepsilon$ on K. Thus, h has the properties described in Theorem 1.

3. Improvements of Theorem 1; comparison with Theorem L

By invoking some recent results on uniform harmonic approximation, stated below as lemmas, we show how the hypotheses on the sets K and the functions g in Theorem 1 can be relaxed. For the concept of thinness, which appears in the lemmas, we refer to [3, Chapter 7]. If K is a compact subset of \mathbb{R}^d , then we denote by \hat{K} the union of K with all bounded components of $\mathbb{R}^d \setminus K$. We denote the interior of Kby K^o .

Lemma 2. Let K be a compact subset of \mathbb{R}^d . The following statements are equivalent: (a) for each g in $\mathscr{H}(K)$ and each positive number ε there exists a harmonic polynomial G on \mathbb{R}^d such that $|g - G| < \varepsilon$ on K.

(b) $\mathbb{R}^d \setminus \hat{K}$ and $\mathbb{R}^d \setminus K$ are thin at the same points of K.

Lemma 3. Let K be a compact subset of \mathbb{R}^d . The following statements are equivalent: (a') for each g in $C(K) \cap \mathscr{H}(K^o)$ and each positive number ε there exists a harmonic polynomial G on \mathbb{R}^d such that $|g - G| < \varepsilon$ on K.

(b') $\mathbb{R}^d \setminus K$ and $\mathbb{R}^d \setminus K^o$ are thin at the same points of K.

Lemma 2 is a refinement of Walsh's theorem and is the harmonic analogue of Runge's classical theorem on holomorphic approximation. Lemma 3 is the harmonic analogue of Mergelyan's theorem. Both lemmas are special cases of theorems of Gardiner [7] and they can also be derived from results of Bliedtner and Hansen [5]. Lemmas 2 and 3 easily yield the following improvements of Theorem 1.

Theorem 2. Let Ω be a non-empty open subset of \mathbb{R}^d . There exists a function h in $\mathscr{H}(\Omega)$ with the following properties.

(i) For every y in $\partial\Omega$, for every compact subset K of \mathbb{R}^d such that $\mathbb{R}^d \setminus \hat{K}$ and $\mathbb{R}^d \setminus K$ are thin at the same points of K and for each g in $\mathscr{H}(K)$ there exists a sequence (τ_n) of simple transformations with $\tau_n(K) \subset \Omega$ for each n such that $\tau_n(K) \to y$ and $h \circ \tau_n \to g$ uniformly on K.

(ii) For every y in $\partial\Omega$, for every compact subset K of \mathbb{R}^d such that $\mathbb{R}^d \setminus K$ and $\mathbb{R}^d \setminus K^o$ are thin at the same points of K and for each g in $C(K) \cap \mathscr{H}(K^o)$ there exists a sequence (τ_n) as in (i).

(iii) Every partial derivative $D^{\alpha}h$ has the properties described in (i) and (ii).

To prove Theorem 2, let *h* be as in Theorem 1, let $\alpha \in \mathbb{N}_0^d$ and let ε be a positive number. Suppose that $y \in \partial \Omega$ and that *K* and *g* are as described in Theorem 2(i). By

Lemma 2 there exists a harmonic polynomial G such that $|g - G| < \varepsilon/2$ on K. Since \hat{K} is compact and $\mathbb{R}^n \setminus \hat{K}$ is connected, it follows from Theorem 1 that there exists a simple transformation τ such that $\tau(K) \subset \Omega \cap B(y, \varepsilon)$ and $|(D^{\alpha}h) \circ \tau - G| < \varepsilon/2$ on \hat{K} . Hence, $|(D^{\alpha}h) \circ \tau - g| < \varepsilon$ on K. This shows that $D^{\alpha}h$ has the approximation property described in Theorem 2(i). To show that $D^{\alpha}h$ has the property described in Theorem 2(i), we use the same argument with Lemma 3 in place of Lemma 2.

It is natural to ask whether the hypotheses on K and g in Theorem 1 can be made exactly analogous to those in Theorem L: in Theorem 1 can we approximate functions g which merely belong to $C(K) \cap \mathscr{H}(K^o)$ if we assume only that K is compact and $\mathbb{R}^d \setminus K$ is connected? When d = 2 the answer is affirmative, and we can even relax the condition that $\mathbb{R}^2 \setminus K$ is connected.

Theorem 3. Let Ω be a non-empty open subset of \mathbb{R}^2 . There exists a function h in $\mathscr{H}(\Omega)$ with the following properties.

(i) For every y in $\partial\Omega$, for every compact set K such that $\partial K = \partial \hat{K}$, and for every g in $C(K) \cap \mathcal{H}(K^o)$ there exists a sequence (τ_n) of simple transformations with $\tau_n(K) \subset \Omega$ for each n such that $h \circ \tau_n \to g$ uniformly on K.

(ii) Every partial derivative $D^{\alpha}h$ has the boundary behaviour described in (i).

When d = 2 the conditions (a), (b), (a'), (b') of Lemmas 2, 3 and the condition $\partial K = \partial \hat{K}$ are all mutually equivalent (see [8, Corollary 1.16]), so Theorem 3 follows from Theorem 2.

Theorem 3 does not extend to higher dimensions. To see this, suppose that Theorem 3 holds in \mathbb{R}^d , where $d \ge 3$. Then, in particular, if K is a compact set in \mathbb{R}^d such that $K^o = \emptyset$ and $\mathbb{R}^d \setminus K$ is connected, every function in C(K) must be uniformly approximable by elements of $\mathscr{H}(K)$ and hence by harmonic polynomials. By Lemma 3, this requires that $\mathbb{R}^d \setminus K$ is nowhere thin. However, this is not necessarily true, as is shown by consideration of the case where $K = L \times [0, 1]^{d-2}$ and L is a compact subset of \mathbb{R}^2 such that $L^o = \emptyset$ and $\mathbb{R}^2 \setminus L$ is thin at some point (see [8, Example 1.2]).

References

- M.P. Aldred, D.H. Armitage, Harmonic analogues of G.R. MacLane's universal functions II, J. Math. Anal. Appl. 220 (1998) 382–395.
- [2] D.H. Armitage, Uniform and tangential harmonic approximation, in: N. Arakelian, P.M. Gauthier (Eds.), Approximation, Complex Analysis, and Potential Theory, NATO Science Series, Kluwer Academic Publishers, Dordrecht, 2001, pp. 29–71.
- [3] D.H. Armitage, S.J. Gardiner, Classical Potential Theory, Springer, London, 2001.
- [4] G.D. Birkhoff, Démonstration d'un théorème élémentaire sur les fonctions entières, C. R. Acad. Sci. Paris 189 (1929) 473–475.
- [5] J. Bliedtner, W. Hansen, Simplicial cones in potential theory II (Approximation theorems), Invent. Math. 46 (1978) 255–275.
- [6] O.P. Dzagnidze, The universal harmonic function in the space E_n (Russian), Soobshch. Akad. Nauk. Gruzin. SSR 55 (1969) 41–44.

- [7] S.J. Gardiner, Superharmonic extension and harmonic approximation, Ann. Inst. Fourier (Grenoble) 44 (1994) 65–91.
- [8] S.J. Gardiner, Harmonic Approximation, London Mathematical Society Lecture Note Series, Vol. 221, Cambridge University Press, Cambridge, 1995.
- [9] K.-G. Grosse-Erdmann, Holomorphe Monster und universelle Funktionen, Mitt. Math. Sem. Giessen 176 (1987) 1–84.
- [10] K.-G. Grosse-Erdmann, Universal families and hypercyclic operators, Bull. Amer. Math. Soc. 36 (1999) 345–381.
- [11] W. Luh, On universal functions, in: G. Alexits, P. Turán (Eds.), Fourier Analysis and Approximation Theory (Proc. Colloq., Budapest, 1976), Vol. II, North Holland, Amsterdam, 1978.
- [12] W. Luh, Über cluster sets analytischer Funktionen, Acta Math. Acad. Sci. Hungar. 33 (1979) 137–142.
- [13] W. Luh, Universalfunktionen in einfach zusammenhängenden Gebieten, Aequationes Math. 19 (1979) 183–193.
- [14] W. Luh, Holomorphic monsters, J. Approx. Theory 53 (1988) 128-144.
- [15] W. Luh, Multiply universal holomorphic functions, J. Approx. Theory 89 (1997) 135–155.
- [16] I. Schneider, Schlichte Funktionen mit universellen Approximationseigenschaften, Mitt. Math. Sem. Giessen 230 (1997) 1–72.