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Abstract

Let O be a non-empty open subset of Rd ; where dX2: A modern theorem on harmonic

approximation is used to show that there exists a harmonic function h on O behaving wildly

near every boundary point of O: The function h is analogous to the holomorphic monster

functions of W. Luh.
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1. Introduction

Birkhoff [4] showed that there is an entire (holomorphic) function f such that the
set of translates fz/f ða þ zÞ:aACg is dense in the space of all entire functions
equipped with the topology of local uniform convergence. Such a function f may be
thought of as behaving wildly near the boundary point N of its domain C: Luh
[11–15] has undertaken a study of holomorphic functions on more general open sets
that exhibit wild behaviour near every finite boundary point. The following theorem
of his is proved in [14].

Theorem L. Let O be a proper open subset of C whose components are simply

connected. There exists a holomorphic function f on O with the following properties.

(i) For every finite boundary point z of O; for every compact set K with connected

complement in C; and for every continuous function g on K that is holomorphic on the
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interior of K there exist linear transformations tnðzÞ ¼ anz þ bn with tnðKÞCO and

distðtnðKÞ; zÞ-0 such that f 3tn-g uniformly on K.

(ii) Further, every derivative f ð jÞ of f and every anti-derivative of f has the boundary

behaviour described in (i).

Luh calls such functions holomorphic monsters. For other results on holomorphic
monsters see the dissertations of Grosse-Erdmann [9] and Schneider [16], and for a
survey of related topics see Grosse-Erdmann’s article [10].

Dzagnidze [6] proved the following analogue of Birkhoff’s theorem.

Theorem D. There exists a harmonic function h on Rd ; where dX2; such that the set of

translates fx/hða þ xÞ:aARdg is dense in the space of all harmonic functions on Rd

equipped with the topology of local uniform convergence.

Theorem D can be proved by using Walsh’s classical theorem on harmonic
approximation (see e.g. [8, Section 8.2]) or, slightly more succinctly, by using a more
recent result about harmonic approximation on unbounded sets (see e.g. [2, Section
11]). The purpose of this note is to show that Theorem L also has a harmonic
analogue. The key result for its proof is again a theorem on harmonic
approximation, quoted below as Lemma 1.

We shall use the following notation. The Alexandroff point (at infinity) of Rd is

denoted by N; and for a subset E of Rd ; we denote by @E the boundary of E in the

one-point compactification Rd,fNg of Rd : Let ðEnÞ be a sequence of non-empty

bounded sets in Rd and let y be a point in Rd : We write En-y if supfjjx 	
yjj:xAEng-0 as n-N; where jj 
 jj denotes the Euclidean norm on Rd ; we write

En-N if inffjjxjj:xAEng-þN as n-N: If E is a non-empty subset of Rd ; then
HðEÞ denotes the space of all functions h that are harmonic on some open set
containing E: In particular, if E is open, thenHðEÞ is just the space of functions that
are harmonic on E: We write N0 ¼ f0; 1; 2;yg and use standard multi-index

notation: if a ¼ ða1;y; adÞANd
0 ; then

Da ¼ @a1þ?þad=@xa1
1 ?@xad

d :

A function t:Rd-Rd will be called a simple transformation if tðxÞ ¼ ax þ y; where

aAR\f0g and yARd : A simple transformation t preserves harmonicity: hAHðtðEÞÞ
if and only if h3tAHðEÞ:

2. Main result

Theorem 1. Let O be a non-empty open subset of Rd ; where dX2: There exists a

function h in HðOÞ with the following properties.
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(i) For every y in @O; for every compact set K with connected complement in Rd ; and

for every g in HðKÞ there exists a sequence ðtnÞ of simple transformations with

tnðKÞCO for each n such that tnðKÞ-y and h3tn-g uniformly on K :
(ii) Every partial derivative Dah has the boundary behaviour described in (i).

In Section 3, we will compare Theorem 1 with Theorem L and also show that in
some respects Theorem 1 can be strengthened.

The following result of Gardiner (see [8, Theorem 3.11]) on tangential harmonic
approximation is central to the proof of Theorem 1. In stating it, we use O� to denote
the one-point compactification of O:

Lemma 1. Let S be a proper relatively closed subset of a connected open set O in Rd

such that O�
\S is connected and locally connected. If HAHðSÞ and u is a positive

superharmonic function on some open set containing S, then there exists a function h in

HðOÞ such that 0oh 	 Hou on S.

We now prove Theorem 1. Until the final paragraph of the proof, we suppose that

O is connected. Let Bðx; rÞ denote the open ball of centre x and radius r in Rd ; we

also define BðN; rÞ ¼ fyARd :jjyjj4r	1g: For each positive integer n let Cn be a
countable (finite if @O\fNg is bounded) subset of O with the property that

Bðy; n	1Þ-Cna| ðyA@OÞ: ð1Þ

We also suppose that the sets Cn are mutually disjoint and that every compact subset

of O contains at most finitely many points of
S

N

n¼1 Cn ¼ C; say. Then for each x in C

there exists a positive number rx such that the balls Bðx; 3rxÞ are mutually disjoint

and contained in O: Further, we choose rx so that rxon	1 when xACn: We define

S ¼
[

xAC

Bðx; 2rxÞ; ð2Þ

where %E denotes the closure of a subset E of Rd : For future reference, we observe
that S satisfies the hypotheses of Lemma 1.

Let ðPmÞ be a sequence of harmonic polynomials that is dense in HðRdÞ with the
topology of local uniform convergence. Let T be the countable set of ordered triples
given by

T ¼ fðBð0; qÞ;Pm; aÞ:q;mAN0\f0g; aANd
0g;

and let ððBn;Hn; anÞÞ be a sequence of elements of T in which each element of T

occurs infinitely often.
We now define a certain harmonic function H on

S
xAC Bðx; 3rxÞ: For this, we fix

a point x in C and let n be the unique positive integer for which xACn: Let tx be a

simple transformation such that txðBnÞ ¼ Bðx; 3rxÞ: Then Hn3t	1
n is a harmonic

polynomial, and there exists a harmonic polynomial Qx such that Dan Qx ¼ Hn3t	1
x

(see e.g. [1, Lemma 2]). We define H by writing H ¼ Qx on Bðx; 3rxÞ for each x in C:
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The next step is to use Lemma 1 to approximate H on the set S defined in (2) by an
element of HðOÞ: We define a positive superharmonic function u on

S
xAC Bðx; 3rxÞ

in the following way. If xAC; then xACn for exactly one n and there exists a positive
number Ax such that

sup
Bðx;rxÞ

jDan wjpAx sup
Bðx;2rxÞ

jwj ð3Þ

for all bounded harmonic functions w on Bðx; 2rxÞ; see e.g. [3, Corollary 1.4.3]. We

define u ¼ ðnAxÞ	1 on Bðx; 3rxÞ for each x in C: Let S be the set defined in (2) and let
the functions H; u be as defined above. We have already observed that the
topological hypotheses of Lemma 1 are satisfied and that HAHðSÞ: Also, u is
positive and superharmonic on an open set containing S: Therefore by Lemma 1,
there exists a function h in HðOÞ such that 0oh 	 Hou on S; that is to say,

0oh 	 QxoðnAxÞ	1 on Bðx; 2rxÞ for each x in Cn and each positive integer n: Since

Dan Qx ¼ Hn3t	1
x when xACn; we find, using (3), that

jDan h 	 Hn3t	1
x jon	1 on Bðx; rxÞ ðxACnÞ: ð4Þ

Now let K be a non-empty compact subset of Rd with connected complement, and

suppose that gAHðKÞ; aANd
0 ; yA@O and e40 are given. To complete the proof of

Theorem 1 in the case where O is connected, it suffices to show that there is a simple
transformation t such that tðKÞCO-Bðy; eÞ and jðDahÞ3t	 gjoe on K: By Walsh’s
harmonic approximation theorem (see e.g. [8, p. 8] or [3, p. 49]), there exists a
harmonic polynomial G such that jg 	 Gjoe=3 on K : Also there exists an element Pm

of the dense sequence ðPnÞ of harmonic polynomials such that jPm 	 Gjoe=3 on K :
Let q be an integer such that KCBð0; qÞ: There exist arbitrarily large values of n for
which ðBð0; qÞ;Pm; aÞ ¼ ðBn;Hn; anÞ; and we choose such an integer n with the

property that n43ð1þ eÞ=e: Let x be a point of Cn-Bðy; n	1Þ: Then
txðKÞCtxðBnÞ ¼ Bðx; rxÞCO:

If yaN; then since rxon	1;

txðKÞCBðx; rxÞCBðy; 2n	1ÞCBðy; eÞ;

similarly, txðKÞCBðy; eÞ in the case where y ¼ N: Further, by (4)

jðDahÞ3tx 	 gjon	1oe=3 on K :

Hence, since Hn ¼ Pm

jðDahÞ3tx 	 gjpjðDahÞ3tx 	 Hnj þ jPm 	 Gj þ jG 	 gjoe on K :

This completes the proof in the case where O is connected.
Finally, we consider the general case. Let the components of O be Oj; where j

belongs to some index set J: For each j in J let hj be a harmonic monster for Oj; that
is to say, Theorem 1 holds with Oj; hj in place of O; h: We define a function h on O by

putting h ¼ hj on Oj for each j: Thus, hAHðOÞ: Let K be a compact set such that

Rd
\K is connected and suppose that gAHðKÞ; yA@O; aANd

0 and eAð0; 1Þ are given.

If yA@Oj for some j; then we choose such a j and denote it by jðyÞ and we define
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y0 ¼ y; otherwise, we choose an index jðyÞ such that Bðy; e=2Þ-@OjðyÞ is non-empty

and take y0 to be a point of this set. There exists a simple transformation t such that
tðKÞCOjðyÞ-Bðy0; e=2ÞCO-Bðy; eÞ and jðDahÞ3t	 gj ¼ jðDahjðyÞÞ3t	 gjoe on K :

Thus, h has the properties described in Theorem 1.

3. Improvements of Theorem 1; comparison with Theorem L

By invoking some recent results on uniform harmonic approximation, stated
below as lemmas, we show how the hypotheses on the sets K and the functions g in
Theorem 1 can be relaxed. For the concept of thinness, which appears in the lemmas,

we refer to [3, Chapter 7]. If K is a compact subset of Rd ; then we denote by K̂ the

union of K with all bounded components of Rd
\K : We denote the interior of K

by Ko:

Lemma 2. Let K be a compact subset of Rd : The following statements are equivalent:
(a) for each g in HðKÞ and each positive number e there exists a harmonic

polynomial G on Rd such that jg 	 Gjoe on K.

(b) Rd
\K̂ and Rd

\K are thin at the same points of K.

Lemma 3. Let K be a compact subset of Rd : The following statements are equivalent:
ða0Þ for each g in CðKÞ-HðKoÞ and each positive number e there exists a harmonic

polynomial G on Rd such that jg 	 Gjoe on K.

ðb0Þ Rd
\K and Rd

\Ko are thin at the same points of K.

Lemma 2 is a refinement of Walsh’s theorem and is the harmonic analogue of
Runge’s classical theorem on holomorphic approximation. Lemma 3 is the harmonic
analogue of Mergelyan’s theorem. Both lemmas are special cases of theorems of
Gardiner [7] and they can also be derived from results of Bliedtner and Hansen [5].
Lemmas 2 and 3 easily yield the following improvements of Theorem 1.

Theorem 2. Let O be a non-empty open subset of Rd : There exists a function h in

HðOÞ with the following properties.

(i) For every y in @O; for every compact subset K of Rd such that Rd
\K̂ and Rd

\K are

thin at the same points of K and for each g in HðKÞ there exists a sequence ðtnÞ of

simple transformations with tnðKÞCO for each n such that tnðKÞ-y and h3tn-g

uniformly on K.

(ii) For every y in @O; for every compact subset K of Rd such that Rd
\K and Rd

\Ko

are thin at the same points of K and for each g in CðKÞ-HðKoÞ there exists a

sequence ðtnÞ as in (i).
(iii) Every partial derivative Dah has the properties described in (i) and (ii).

To prove Theorem 2, let h be as in Theorem 1, let aANd
0 and let e be a positive

number. Suppose that yA@O and that K and g are as described in Theorem 2(i). By
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Lemma 2 there exists a harmonic polynomial G such that jg 	 Gjoe=2 on K : Since K̂

is compact and Rn
\K̂ is connected, it follows from Theorem 1 that there exists a

simple transformation t such that tðKÞCO-Bðy; eÞ and jðDahÞ3t	 Gjoe=2 on K̂:
Hence, jðDahÞ3t	 gjoe on K : This shows that Dah has the approximation property
described in Theorem 2(i). To show that Dah has the property described in Theorem
2(ii), we use the same argument with Lemma 3 in place of Lemma 2.

It is natural to ask whether the hypotheses on K and g in Theorem 1 can be made
exactly analogous to those in Theorem L: in Theorem 1 can we approximate
functions g which merely belong to CðKÞ-HðKoÞ if we assume only that K is

compact and Rd
\K is connected? When d ¼ 2 the answer is affirmative, and we can

even relax the condition that R2
\K is connected.

Theorem 3. Let O be a non-empty open subset of R2: There exists a function h in HðOÞ
with the following properties.

(i) For every y in @O; for every compact set K such that @K ¼ @K̂; and for every g in

CðKÞ-HðKoÞ there exists a sequence ðtnÞ of simple transformations with tnðKÞCO
for each n such that h3tn-g uniformly on K.

(ii) Every partial derivative Dah has the boundary behaviour described in (i).

When d ¼ 2 the conditions (a), (b), ða0Þ; ðb0Þ of Lemmas 2, 3 and the condition

@K ¼ @K̂ are all mutually equivalent (see [8, Corollary 1.16]), so Theorem 3 follows
from Theorem 2.

Theorem 3 does not extend to higher dimensions. To see this, suppose that

Theorem 3 holds in Rd ; where dX3: Then, in particular, if K is a compact set in Rd

such that Ko ¼ | and Rd
\K is connected, every function in CðKÞ must be uniformly

approximable by elements ofHðKÞ and hence by harmonic polynomials. By Lemma

3, this requires that Rd
\K is nowhere thin. However, this is not necessarily true, as is

shown by consideration of the case where K ¼ L � ½0; 1�d	2 and L is a compact

subset of R2 such that Lo ¼ | and R2
\L is thin at some point (see [8, Example 1.2]).
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